If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12.3t^2-8t-33=0
a = 12.3; b = -8; c = -33;
Δ = b2-4ac
Δ = -82-4·12.3·(-33)
Δ = 1687.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-\sqrt{1687.6}}{2*12.3}=\frac{8-\sqrt{1687.6}}{24.6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+\sqrt{1687.6}}{2*12.3}=\frac{8+\sqrt{1687.6}}{24.6} $
| 2x+50=7(x-2)+4 | | 2(1-17a)=38-2a | | 56=5w-14 | | 3(2z-100=-12 | | 7(y-3)+y=27 | | 7a+10=5a+2 | | 11w-9w=10 | | 3x²+4=436 | | -3+m/2=-5 | | -2x=-10x+6 | | 2/3=p/3 | | -0.5x=1.1=-2.9 | | 8m+5=69m= | | 2x+34=4(x+) | | -(-10)-8y=2 | | -289=17n | | 5a+14=3a-5 | | 25x+50=80 | | 4=6p-2 | | 4=6p-6 | | (3(7y+1)/3)+2=7y+3 | | -54=-6(x+2) | | 0=2+x/3 | | -4r-8=4r+8 | | 9x+3=-4 | | 5q-q+4q-8=16 | | k-3.72=48.3 | | y=1/4(2)-3 | | (4x-1)+(2x+1)+6x=180 | | u-u+3u-3=18 | | H(s)=0.003s^2+0.07s-0.027 | | y=-5-24 |